Loading…
This event has ended. Visit the official site or create your own event on Sched.
Click here to return to main conference site. For a one page, printable overview of the schedule, see this.
View analytic
Tuesday, June 28 • 2:30pm - 3:30pm
Multi-stage Decision Method To Generate Rules For Student Retention

Log in to save this to your schedule and see who's attending!

Poster #13

The retention of college students is an important problem that may be analyzed by computing techniques, such as data mining, to identify students who may be at risk of dropping out. The importance of the problem has grown due to institutions’ requirement of meeting legislative retention mandates, face budget shortfalls due to decreased tuition or state-based revenue, and fall short of producing enough graduates in fields of need, such as computing. While data mining techniques were applied with some success, this article aims to show how R can be used to develop a hybrid methodology to enable rules to be created for the minority class with coverage and accuracy range which were not available as per existing literature. A multiple stage decision methodology (MSDM) used data mining techniques for extracting rules from an institution’s student data set to enable administrators to identify at risk students. The data mining techniques included partial decisions trees, K-means clustering, and Apriori association mining to be implemented in R. MSDM was able to identify students with up to 89% accuracy on student datasets, where the number of at risk students was fewer than the retained students that made the at risk model difficult to build. The motivation for using R was twofold. First, to generate rules for minority class, and second, use R to make it reproducible.

Speakers
avatar for Soma  Datta

Soma Datta

Assistant Professor, University Of Houston Clear Lake
R in decision trees and Apriori, Controlled decision trees, Teaching R in school.


Tuesday June 28, 2016 2:30pm - 3:30pm
Sponsor Pavilion 326 Galvez Street Stanford, CA 94305-6105

Attendees (20)