Loading…
This event has ended. Visit the official site or create your own event on Sched.
Click here to return to main conference site. For a one page, printable overview of the schedule, see this.
View analytic
Tuesday, June 28 • 5:39pm - 5:57pm
Differential equation-based models in R: An approach to simplicity and performance

Log in to save this to your schedule and see who's attending!

The world is a complex dynamical system, a system evolving in time and space in which numerous interactions and feedback loops produce phenomena that defy simple explanations. Differential-equation models are powerful tools to improve understanding of dynamic systems and to support forecasting and management in applied fields of mathematics, natural sciences, economics and business. While lots of effort has been put into the fundamental scientific tools, applying these to specific systems requires significant programming and re-implementation. The resulting code is often quite technical, hindering communication and maintenance. We present an approach to: (1) make programming more generic, (2) generate code with high performance (3) improve sustainability, and (4) support communication between modelers, programmers and users by: - automatic generation of Fortran code (package rodeo) from spreadsheet tables containing state variables, parameters, processes, interactions and documentation, - numerical solution with general-purpose solvers (package deSolve), - web-based interfaces (package shiny), that can be designed manually or auto-generated from the model tables (package rodeoApp), - creation of docs in LaTeX or HTML. Package rodeo uses a stoichiometry-matrix notation (Petersen matrix) of reactive transport models and can generate R or Fortran code for ordinary and 1D partial differential equation models, e.g. with longitudinal or vertical structure. The suitability of the approach will be shown with two ecological models of different complexity: (1) antibiotic resistance gene transfer in the lab, (2) algae bloom control in a lake.

Moderators
avatar for Thomas  Petzoldt

Thomas Petzoldt

scientist, TU Dresden (Dresden University of Technology)
dynamic modelling, ecology, environmental statistics, aquatic ecosystems, antibiotic resistance genes, R packages: simecol, deSolve, FME, marelac, growthrates

Tuesday June 28, 2016 5:39pm - 5:57pm
SIEPR 120 366 Galvez St, Stanford, CA 94305

Attendees (30)